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COMPLEX TURBULENT COMPRESSIBLE FLOW 
COMPUTATION USING A TWO-LAYER APPROACH 

BIJAN MOHAMMADI 
INRIA-MENUSIN. Domaine de Voluceau. BP 105, F-78153 Le Chesnay, France 

SUMMARY 
A two-layer approach is proposed to compute complex flows including separations. For high- and low- 
Reynolds-number regions we use a two-equation k--E model and a one-equation k-L model respectively. 
A robust algorithm is proposed for the treatment of the convective part of the turbulence equations. Several 
complex configurations including separations are computed. 
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1 .  INTRODUCTION 

The success of turbulence modelling and simulation depends greatly on the treatment of 
near-wall regions. The classical wall-law technique is based on the assumption that there exist 
universal laws related to a turbulence in equilibrium near the wall. This approach avoids the 
solution of the Navier-Stokes equations and turbulence models in the near-wall regions. How- 
ever, such a technique fails when separation occurs. On the other hand, the modified low- 
Reynolds-number two-equation models which are valid up to the wall can be employed.' Pate1 et 
al. have concluded that even for simple configurations these models are not entirely satisfactory. 
Furthermore, a computation using such a model requires considerably more grid points. This is 
because the turbulent quantities (especially E )  have very large gradients in the sublayer. Therefore 
the use of these models in more complex situations may introduce uncertainties and the solution 
may be mesh-dependent. 

In this paper we propose to extend the two-layer approach' to compressible configurations. 
This technique is more complicated than a simple wall-law technique but more practical than 
a low-Reynolds-number two-equation model. In particular, the model is less mesh-dependent and 
numerically more stable. Hence a two-equation model is used for high-Reynolds-number regions 
and a one-equation model near the solid wall. For the two-equation model the compressible 
version of the k--E turbulence model is used as in Reference 3. This model is directly obtained from 
the incompressible version of the model. The convective parts of the equations are treated by 
a method of characteristics and the source terms are treated during this step. In the one-equation 
model we have a transport equation for one turbulence scale and the other scale is computed by 
an algebraic expression. 

In Section 2 we describe the Navier-Stokes equations and the turbulence models which we 
used. Section 3 is devoted to the description of the numerical methods. In Section 4 several test 
cases including separation are presented and it is shown that the two-layer approach combined 
with our algorithm for the k--E equations resolves the major difficulties encountered in turbulent 
flow computation with two-equation models. 
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2. THE TURBULENT AND MEAN FLOW EQUATIONS 

Let p be the density, u the velocity, T the temperature, E = T + ) I U ~ ) ~ / ~  the total energy, 
p = (y - 1 ) p  T the pressure, Vu = ui, the gradient of u, D = ui, its divergence, S = ( V u  + V u T )  - $0 
the deformation tensor and F = S : Vu.  

2.1. The averaged Navier-Stokes equations 

We split all the variables into mean and fluctuating parts. We use the Reynolds average for the 
density and pressure and the Favre average for the other variables and we then consider the 
Reynolds-averaged Navier-Stokes equations. Once the unknown correlations are modelled as in 
Reference 3, we have 

aP - + v - (pu) = 0, 
at 

with 
PI = P + 3 Pk, El = E + k,  

y =  1.4, Pr = 0.72, Pr,  = 0.9, 

where pt and k are the eddy viscosity and the turbulent kinetic energy respectively. As in 
Reference 3, we suppose that the turbulent contributions to the pressure and the total energy are 
negligible, so, 

E l = E ,  PI = P. 
Indeed, these turbulent contributions do not play an essential role except in highly sheared 
regions. Hence the coupling between the turbulent and mean flow equations is taken into account 
only through the viscosity. Moreover, this enables us to have the same constitutive law as in the 
laminar case. Another reason is that in our k--E model several compressibility effects are not taken 
into account. Therefore k will probably be unpredicted in regions where compressibility effects 
are important. Thus the introduction of a wrong turbulent kinetic energy in the mean computa- 
tion may produce uncertainties. 

2.2. Turbulence models 

It is well known that turbulence modelling when the Reynolds number is high is easier than 
when it decreases. For example, the high-Reynolds-number hypothesis allows us to ignore several 
unknown correlations in the non-modelled k-equation. In the same way the presumed analogy 
between the k- and .+equations is only valid in the high-Reynolds-number case. However, when 
the Reynolds number decreases, the behaviour of the different unknown correlations is not clear. 
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2.3. The high-Reynolds-number k--E model 

Because of the hypothesis of equilibrium between production and destruction of turbulence, 
the classical k--E model is only valid in fully turbulent regions. Therefore we will use it only when 
we are sure that viscous effects are not dominant (e.g. for y +  2 200). The k-& equations we consider 
are 

- + u v - E - - v  P l (  c,p-VVE 7 )  =s,. at 
a& 

The right-hand sides of (1) and (2) contain the production and destruction terms for k and E, 

where c,, c l r  c2 and c, are 0.09, 0129, 1.92 and 0.07 respectively. The eddy viscosity is given by 

P t = C , P - - .  

As in Reference 3, in our version of the k-E model we have completely neglected the trace of the 
pressure-strain tensor and the scalar product of pressure gradient and Favre-averaged velocity 
fluctuation, 

k2 
& 

- -  
p‘V - u” - u” v p, 

where a‘ denotes the Reynolds average of a (a = ii + a’)  and a“ is the Favre-averaged fluctuation. 

2.4. Low-Reynolds-number case 

The previous k--E model is established under the hypothesis that the local Reynolds number is 
high. However, near a solid wall the local Reynolds number decreases, so to compute flow 
adjacent to a wall, we have to use a different approach. The most classical technique is to replace 
the boundary of the computational domain a small distance away from the wall and to simulate 
the action of the wall on the flow using slip boundary conditions. Using this technique in 
Reference 3, we managed to compute attached flows, but to compute complex flows where 
separation occurs, this technique fails. On the other hand, because of the complexity of the 
situations we consider, a modified low-Reynolds-number k--E model will require too fine a mesh, 
Moreover, we are not really interested in the exact description of the flow field or the turbulent 
quantities in the sublayer. Thus we prefer an intermediate solution which consists of computing 
the flow up to the wall using a two-layer approach. Hence for near-wall regions (e.g. y +  <200) 
a one-equation k-L model and for regions away from the wall the classical k--E model described 
above are applied. The one-equation k-L turbulence model consists of one transport equation for 
the turbulent kinetic energy k, 

ak 1 -+ u V k - -  V - ( p t V k ) = p t F - $  Dk -Diss, 
at P 
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where 

is the dissipation of the turbulent kinetic energy, p1=crpk1'21,  is the eddy viscosity and I ,  and 
I ,  are two length scales which contain the damping effects in the near-wall regions: 

In the previous expression the local Reynolds number ~ + = k ' / ~ p y / p  depends on the local 
turbulence intensity ('w' means at the wall) and on the distance y from the wall. This avoids the 
use of friction at the wall (ur), which is computed using the mean flow field. 

3. STABILITY IMPAOVEMENT 

Implementing the k--E model in a finite element framework involves several difficulties. The most 
important among these is, from the numerical point of view, the high instability of the discretized 
k-e equations. In References 4 and 5 the authors describe several difficulties encountered in the 
implementation of the k-8 model in their solvers. To avoid such a problem, a classical technique 
consists of introducing artificial diffusivity in the streamline directions or modifying the diffusion 
constants in the k- and &-equations to stabilize the discretized system. Our experience shows that 
the k--E system must be solved by a 'physical' method. Indeed, classical methods for solving 
non-linear problems (explicit or Newton steps) fail to converge or generate negative values of 
k and E.  We believe that the method must stay in close connection with the flow description. For 
this reason we prefer a characteristic Galerkin method. Hence we follow the evolution of the 
turbulent quantities along the streamlines. Moreover, we know that the difficulties come from the 
resolution of the dynamical part (i.e. the convective operator and the source terms) of the 
equations and the viscous part is not really difficult to solve (by classical centered schemes). 
Therefore we study this dynamical part more carefully. In other words, let 

dk k2 
- -+uVk=c, -  F - 4 k D - &  
at & 

and 

(9) 

be the dynamical parts of the k- and &-equations. Several authors have proposed combinations of 
k and E which are more interesting for numerical applications. In References 3 and 6 we proposed 
a new pair of variables and showed that the corresponding system is more stable. We denote 
dldt = alat + UV. Let 

k E2 
8=-, & 'P'k"' 

The dynamical 8- and cp-equations become from (9) and (10) 

(12) 
d 
- 8= - a F 6 2 + b D 8 + c ,  
dt 
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and 

where a=c,-c,,, b=3(c1/c,-1), c=c2-1, ct=3c,,-2c1, p = 2 - 2 c l / 3 c ,  and 6=2c2-3 are 
positive constants. F is always positive. Indeed, 

F =(VU + vuT - + DI) : VU. 

Thus, if u=(o, w), then 

F = + ( u , ~  - w , ~ ) '  + ( w , ~  + u , ~ ) '  2 0. 

Therefore 8 stays bounded and po~i t ive .~  The cp-equation ( 1 3 )  can also be integrated along the 
characteristic curves. Its solution for a positive initial condition cpo =-E$/k8, is 

cp = cpo exp [ (-UFO + p D  -!) 0 t 1. 
Therefore cp stays positive and bounded if D is such that 

UFO 6 
D < - + -  

B P O '  

Thus for compression cases cp always stays bounded and positive, but for strong expansion 
situations cp may behave exponentially. This is somewhat natural because several compressibility 
effects are not taken into account by the modeL3 

In the low-Reynolds-number case (y' <200) we can also find equations for O and cp. Indeed, 
by (6) we have 

Thus, using (5)-(8),  we obtain 

d d 
dt dt 
- c p = - A l - k ,  

d d 
dt dt - O=Az - k ,  

with A ,  and A 2  given by 

A1 = 2pwy2 PW I: k"' exp ( - &) 
A 2 = [  -exp( P w Y 2  -&)-&I. 

2pwk 

A ,  is always positive but the sign of A2 is not known a priori. Thus the behaviour of cp and 
6 changes in the low-Reynolds-number regions. This is in agreement with the fact that the k--E 
model is not valid in the near-wall region. Indeed, the nature of the equations changes from one 
region to the other. Thus we use the previous stability analysis only for the fully turbulent regions. 
We will now describe the numerical techniques which we used to solve the turbulent equations. 
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4. RESOLUTION SCHEME 

The numerical techniques are the same as those developed in Reference 3. We perform a splitting 
between the Navier-Stokes and turbulent equations and search for a steady solution by an 
iterative scheme. In other words, at each iteration the turbulent solver gives a new viscosity to the 
Navier-Stokes solver until convergence. The Navier-Stokes equations are solved by an implicit 
upwind solver using an Osher-Riemann solver for the convective part of the equations7 or 
a Lax-Wendroff scheme.'.' Moreover, we use a local time step technique. This time step may be 
reduced by the k--E solver for reasons of stability. 

4.1. The turbulent solver 

To solve the k--E equations, we perform a splitting between the transport and diffusion parts of 
the equations. The transport part of the equations is solved by a characteristic Galerkin method 
and we treat the source terms during this step. For points which are in the high-Reynolds-number 
regions the equations for the new variables cp and 8 are used in place of those for k and E. The 
diffusion part of the equations is solved by a classical P' finite element technique. 

Notations. We denote by S: and S; (resp. S: and Se-) the positive and negative parts of 
Sk = S :  - S ;  (resp. Sc); k"((X"(t)) (resp. &"(X"(T))) is the value of k" (resp. E")  at the beginning of the 
characteristic curve. 

1. Time step reduction 
Consider the following transport equation (d/dt = at + auV - ): 

da 
-=f=f+ -f - 
dt 

We require positivity of a"' 'I2 if a" is positive and we write f " = f +" - f - n  as 

Using the characteristic method, a possible scheme to solve (16) is then (to first order) 

,n+ 112 = a"(X")  
l+(At/a")(f -"-f+") (17) 

Thus if a" is positive, the positivity of 
f '"> f -n, the positivity is obtained under the following limitation for the time step: 

is guaranteed always if f-"af +". However, if 

a" 
A t <  

'f +"-f -" 
2. How to compute y +  

To compute y' ,  we need for each point in the mesh its normal distance to the wall, y. Thus we 
compute the minimum distance between the points and the wall nodes and we use this quantity 
instead of y. Our experience is that despite this not being exact, it is sufficient and the method is 
not greatly affected by this operation. Another remark is on the convenience of the method: we do 
not need the friction at the wall to compute y'.  

Knowing p", u", k" and E", we propose the following algorithm to compute the turbulent 
quantities at step n +  1. 
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Algorithm (k,  E )  

1. Compute k"(X") and E"(X") (i.e. convect k" and E"). 

2. If y +  > 200 (i.e. points where the local Reynolds number is high), then 
(a) if necessary, reduce the time step locally by (18) applied to (12) and (13) 
(b) compute I 9 " + l i 2  and (pn+1/2 by (17) 
(c) compute k"+'/' and E"+'/ '  b Y 

k n + 1 / 2 -  n + 1 / 2  2 n + l / 2  En + 1/2 =(en + 1/2)-  3 (g + 1/2) - 1.  -(e )- (cp )-I9 

3. If y +  <200, then consider the dynamical part of the low-Reynolds-number k-equation (7). If 
needed, reduce the time step by (18) and compute directly k"+'/' by (17) and - E " + ~ / '  by (8). 

4. Solve 
k"+ll2 

V .  [(p+ p:)Vk"+ '1 = - 
k"+l  1 

At  p" At ' 
&"+I 1 & n + l / Z  

v - [(p + c,p:)v&"+'] =-. At p" At 

Equations (19) and (20) are solved by a classical finite element method on P'-triangles. 
Moreover, mass lumping should be used. This treatment of the diffusion guarantees the positivity 
and boundedness of the solution, for Dirichlet boundary conditions, only if there is no obtuse 
angle in the meshes for all values of At, F and D. It is the characteristic method that leads us to the 
stability analysis used here. For this reason it is hard to adapt this algorithm to other methods. 

5. NUMERICAL RESULTS 

In this section we consider three test cases including separation and recirculation. The first test 
case consists of the flow over a cylinder. It is well known that this case is unsteady, so we will see 
that using a steady approach, the flow which we compute corresponds more to a situation with 
a splitter plate in'the wake. The other cases are flow over compression ramps in supersonic and 
hypersonic ranges. We show that the two-layer approach is quite promising for treating such 
complex flows. 

5.1. Flow over a cylinder 

We present numerical calculations of the flow past a circular cylinder in the subcritical 
Reynolds number range. The Reynolds number is 5 x lo4 rn-' and we consider a subsonic 
situation ( M ,  =03). The diameter of the cylinder is 2 m. 

Our aim is to observe the dependence of the results upon the mesh and, if possible, to obtain 
mesh-independent results. The time-averaged Navier-Stokes equations are solved using a finite 
volume solver based on a Lax-Wendroff scheme. Because of the time-averaged equations under 
consideration and because our solver is only first-order-accurate in time, we are interested in 
a steady state. However, it is well known that the flow behind a cylinder is unsteady. We consider 
then the flow past only half a circular cylinder. Our purpose is not to obtain good agreement with 
the data. Indeed, it seems that" the computation of the flow past a cylinder requires an unsteady 
solver because the vortex-shedding phenomenon has a very great impact on the results. Rather, 
we want to study the robustness of the k--E solver on quite a hard test case and the quasi- 
independence of the results upon the mesh using a two-layer approach. 
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We present two computations for the same data on different meshes. For both computations 
we use polar grids extending to 10 diameters away from the cylinder and having respectively 
70x 70 and 80 x 110 nodes. Following Majumdar and Rodi," because in the subcritical 
Reynolds number range the attached boundary layer is laminar, we introduce a switch to force 
the eddy viscosity to zero in the first quarter of the computational domain. Indeed, the k--E model 
produces a very high level of turbulence in front of the cylinder and in this zone the variation in 
the velocity is large because the flow arrives at the body. However, the flow is clearly laminar. 

On the cylinder, u and k are set to zero. For the velocity a symmetry boundary condition 
(u - n =0) and for the turbulent quantities a homogeneous Neumann boundary condition are 
applied on the centre-line. Dirichlet boundary conditions are used for all the variables on the first 
quarter of the external boundary (0' d w d 90"), i.e. 

u= 1, v = o ,  k = k i n ,  E = E i n r  

and a homogeneous Neumann boundary condition is used for the rest of the external boundary. 

t _ _  _ _ - - - -  

Figure 1 .  Partial view of the 70 x 70 polar grid and the velocity distribution around the cylinder 
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We begin the computation with a uniform flow. In particular, k and E are initialized by kin and ein. 
Two computations are done with loT4 u', and 10-3u', as initial and inlet values for k and E. It 
seems that the levels of kin and ein do not have a great impact on the results. The results we present 
are computed with kin =gin = 10- u', . 

A plot of a partial view of the 70 x 70 grid and the velocity distribution around the cylinder are 
given in Figure 1. The calculated wall pressure coefficient C ,  and wall friction coefficient Cf are 
given in Figure 2. These results are compared with available experimental data.' ' We can see that 
the base pressure is overestimated, especially in the separation region, and the skin friction is 
deceptive too. However, these results show that the solution is quite mesh-independent. 
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Figure 2. Distributions of C ,  (top) and Cr (bottom) on the cylinder: +, fine; *, coarse; ,5, data 



156 8. MOHAMMADI 

Contour plots of the Mach number and C ,  computed on the fine mesh are given in Figure 3. 
Contours of the turbulent kinetic energy k and the ratio of eddy viscosity to laminar viscosity 
(pJp) are shown in Figure 4. The eddy viscosity has a level between zero and 700~~. This is less 
than the level presented by Majumdar and Rodi'' (between zero and 1600p,). 

As pointed out by Majumdar and Rodi," the computation of the flow past a circular cylinder 
is not possible without a time-dependent solver. The fine computation has taken about 2 h on 
a CRAY-2. The Navier-Stokes mean flow solver is vectorized while the turbulent solver works in 
scalar mode (in principle the characteristic method is not vectorizable because there are a lot of 

\i 

Figure 3. Contour plots of Mach number (top) and C, (bottom) 
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Figure 4. Contour plots k (top) and p J p ,  (bottom) 



758 B. MOHAMMADI 

geometrical tests). Thus the turbulent computation takes about one-third of the total CPU time. 
At this moment we have concentrated our efforts on the quality of the results rather on the 
reduction of the computational cost. 

This computation shows that the two-layer approach combined with our algorithm enables us 
to compute such a complex flow without supplementary attention. Indeed, before using the mixed 
algorithm, we had never managed to compute such a flow without using limiters on k and E.  On 
the other hand, in this computation no positivity or boundedness problems have been encoun- 
tered. 

Finally, it is surprising to see that the flow stays subsonic. Indeed, the corresponding Euler 
computations show that at M, =0.5 the flow is transonic.'2 

5.2.  Supersonic compression corner 

This test case consists of a 35" supersonic compression corner (test case 3.3 of the Workshop on 
Hypersonic Flows for Reentry Problems, Antibes, January 1990). The Mach number is 5 and the 

Figure 5. Surface flow visualizations (M,=S, Re,=4 x lo7 m-') 
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Reynolds Number 4 x lo7 m- '. The free stream temperature is T, = 83.6 K and the wall temper- 
ature Tw=288 K. Experiments have been carried out by Delery and Coet at ONERA.13 The 
overall flow organization is shown by a Schlieren photograph (Figure 5).  

We have used two turbulence models: a Cebeci-Smith turbulence model including Goldberg's 
modification (see Appendix) and our k--E model. For the k-E computation we assume that the flow 
is laminar before x,=O.O8 (Re,,=3.2 x lo5). We take into account the transitional effect by 
varying the eddy viscosity from zero to p, between x, and 2x,. Figure 6 gives a partial view of the 
refined mesh. It has 5067 nodes and 9792 triangles. This grid is obtained from a Cartesian one by 
a refinement p r o ~ e s s . ' ~ . ' ~  The corner is at x=0-25m from the leading edge. The first mesh 
spacing from the wall is m. The computations are initialized by a uniform state based on the 
inlet values. The effects of the initial and inlet levels of the turbulent quantities are studied. Free 

X-0.1 5 ~=0.25 
Figure 6. Partial view of the mesh (5067 nodes, 9792 triangles) 
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stream conditions are applied at the inlet and upper boundaries. A homogeneous Neumann 
condition is used for all the variables at the outlet boundary. 

First the influence of the initial and inlet turbulence levels on the results is studied. To this end, 
two computations are made on the fine mesh, firstly with as inlet and initial values for 
k and E and secondly with Profiles of the turbulent kinetic energy and the ratio of 
turbulent eddy viscosity to laminar viscosity across the boundary layer are shown in Figure 7 

0.0075 

0. 0050 

0. 0025 

0.0000 

0. 0 0. 5 0. 9 1. 4 

I y / d i l l o  1 

[ m u - i u r b / m u - l  a m  I 
205. 4 I 

136. 9 

68. 5 

0. 0 

0. 0 0. 5 0. 9 1. 4 

1 y / d m l l o  I 
Figure 7. Profiles of k (top) and p,/p, (bottom) at x=0.15 and 0.25 m from the leading edge: A15 and A25, 

k 0 = ~ , , = 1 0 - 6 ~ ~ ;  B15 and 825, ~ , = E ~ = I O - ~ U ~  
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These profiles are given for x = 0.1 5 and 0.25 m (the corner) from the leading edge. We can see that 
the initial and inlet values levels do not have a great impact on the results in the boundary layer. 

In the same way the effect of the local refinement of the mesh on the behaviour of the k--E model 
across the shock wave is studied. The computations are made with 10-4uZ, as initial and inlet 
values. Figure 8 shows the behaviour of the kinetic energy across the shock wave located after the 
corner computed on the coarse and fine meshes. For this we look at the k-values at three locations 
from the wall (5, 2 and 1 mm). The turbulent intensity grows more significantly across the shock 
for the fine mesh but we can see that in both cases k quickly takes the same level after the shock. 
This is somewhat natural, because after the shock we are in a grid turbulence situation (even in 
the boundary layer), since the production of turbulence is clearly insufficient and the turbulence 

k 
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0 000 
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Figure 8. Behaviour of k across the shock wave computed on the coarse (top) and fine (bottom) meshes 
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Figure 9. Contour plots of C,  (top) and Mach number (bottom) computed 
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Figure 10. Contour plots of k (top) and p, (bottom) computed on the fine mesh 
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level decreases exponentially. If we continue to refine the mesh, the k-level becomes very large, 
which has no physical meaning. Thus it seems that our version of the k--E model is not able to 
compute correctly the behaviour of the turbulent variables across the shock wave, but this fact 
does not affect the general flow prediction if the shock is correctly located on a locally refined 
mesh. This is quite reasonable because of the presence of 11 Vu 11 in the source terms. 

Figure 9 shows contour plots of C, and the Mach number obtained on the refined mesh. The 
turbulent kinetic energy and eddy viscosity contours are given in Figure 10. The shock is well 
captured near the corner because the mesh is quite fine, but away from the corner it spreads. This 
fact has a great impact on the eddy viscosity distribution. Indeed, across the shock region near the 

Cf 
0.010 

0.008 

0. 006 

0. 804 

0.002 

0. 000 

-0.002 I I * I I 
0. 610 0 10 0 20 0. 20 - KE ..... C S  

I I 

0 0  o * * *  I - - Y I  

0 00 0 10 B 20 0 30 x 
Figure 1 1 .  Cf (top) and C, (bottom) at the wall computed by the k--E and Cebeci-Smith models (0, data from 

Reference 13) 
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-4 .0  

corner the eddy viscosity variations stay localized, but away from the corner they perturb the flow 
more significantly. The eddy viscosity level is 200 times the laminar one on the flat plate and 
grows across the shock to about 2000,~~. The following results are compared with results obtained 
using the Cebeci-Smith turbulence model (see Appendix) and with data from Reference 13. 

In Figure 11 we show the friction and pressure coefficients at the wall. Better agreement with 
the experimental pressure coefficient is obtained with our approach. Figure 12 shows the heat flux 
coefficient at the wall and the velocity profiles through the boundary layer at x=O15 and 0.25 m 
computed by the two models. 
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Figure 12. Log,,(C,) at the wall (top) and velocity profile (bottom) through the boundary layer at x=O.15 and 0.25 m 
from the leading edge computed with the k--E and Cebeci-Smith models 
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The wall coefficients are given by 

KVT 
C h =  -7 c - 7 ,  c,=----- 3 ‘  

% P - P m  
‘ - t P m u m  I P W U 2 , ’  2 Pmum 

We can see that the Cebeci-Smith model predicts a greater recirculation. For the pressure 
coefficient the agreement with the data is better for the k--E computation, while for the heat flux 
coefficient the two-equation model gives a larger flux at the separation and reattachment points. 
Despite the inability of the model to predict the behaviour of the turbulent quantities across the 
shock, the k--E model is interesting for high-speed flows because it predicts quite correctly the 
most important quantities such as wall coefficients. The prediction of the model in shock wave 
regions can be improved by introducing the compressibility effects which we have ignored16*17 in 
the turbulent flow equations. In the same way, the pressure coefficient is underpredicted by both 
the k--E and Cebeci-Smith computations. For the two-equation computation this may be due to 
the fact that we have neglected the turbulent contribution to the pressure. More precisely, we 
have ignored $ p k  in the pressure expression. This enables us to conserve the same constitutive law 
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Figure 13. Mesh (top) for the hypersonic compression ramp (4587 nodes, 8832 triangles) and C, (bottom) at the wall for 
the laminar and turbulent computations 
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-2. 500 

as in the laminar case.3 The first computation before refinement took about 90 min on a CRAY-2. 
After refinement it took 15 min to reach a steady solution. 

.....m.*p .. '.as.,, .... 
ao.. . :. 

- it 

5.3. Hypersonic compression corner 

We study a 15" hypersonic compression corner (test case 3.5 of the Workshop on Hypersonic 
Flows for Reentry Problems, Antibes, January 1990). The geometry is the same as for the previous 
case except that the angle at the corner is different. The Mach number is 10 and the Reynolds 
number 9 x lo6 m-'. The free stream temperature is T, =50 K and the wall temperature 
T, = 288 K. Experiments are available at ONERA.I3 

The mesh is shown in Figure 13. It has 4587 nodes and 8832 triangles. The first spacing normal 
to the wall is fixed at 1.5 x lo-' m. On this mesh we have done two computations: a completely 
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Figure 14. C ,  (top) and S,=log,,(C,) (bottom) for the hypersonic compression corner for the laminar and turbulent 
computations (0, data from Reference 13) 
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laminar computation (i.e. without any turbulence modelling) and another computation using our 
k--E solver. In the second case the turbulence model is started at the corner (x = 0.25 m). The initial 
and boundary conditions are the same as for the previous case. The turbulent computation is 
done with ki ,=Ein= 10-4u$. 

Figure 13 gives a plot of the friction at the wall (laminar and turbulent computations). In the 
turbulent case we have a smaller recirculation and the level of friction after the corner is higher 
than for the laminar computation. Plots of the pressure and heat flux coefficients are given in 
Figure 14. These results are compared with data from Reference 13. Better agreement is obtained 
with the turbulent computation (especially for the heat flux coefficient after the corner). 

On the other hand, the extent of the recirculation bubble is underpredicted by both the laminar 
and turbulent computations. It seems that in the separation region the mesh is not enough fine. 
Thus, to observe the dependence of the results upon the mesh refinement, we have done the same 
computations on a new mesh with 8358 nodes and 16 236 triangles. The pressure coefficients at 
the wall on the fine and coarse meshes obtained for the turbulent and laminar computations are 
shown in Figure 15. In the same way the corresponding friction and heat flux coefficients are 
presented in Figures 16 and 17 respectively. We can see that, especially for the laminar computa- 
tion on the fine mesh, a higher recirculation region is predicted and better agreement with the 
data is obtained in this region. On the other hand, in the turbulent computations the extents of 
the recirculation bubbles are quite similar on the fine and coarse meshes. This proves that our 
solver is quite mesh-independent. 
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Figure 15. C ,  obtained for the laminar and turbulent computations on the fine and coarse meshes 
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These results are interesting because the nature of the flow is not well known (laminar, 
transitional or turbulent)." The argument concerning the turbulent correction of the pressure 
remains valid. This may explain why the pressure coefficient is underpredicted although the heat 
flux coefficient is well predicted on the ramp. 

6. CONCLUSIONS 

To compute turbulent flows including separation, a two-layer approach and a robust algorithm 
for k and E have been proposed. 

Several computations have proved the extreme robustness of the k--E solver. No positivity or 
boundedness problems have been observed. The two-layer approach clearly appears to be 
a convenient tool for avoiding near-wall difficulties without requiring supplementary attention. 
This enables us to compute complex turbulent recirculating flows. Such computations are not 
possible with a classical wall-law technique, and a modified low-Reynolds-number two-equation 
model requires considerably more grid points. Moreover, because in the latter model the 
coefficients of the &-equation are tuned for the flow over a flat plate, they are not valid in general. 

The flow over the cylinder and the hypersonic compression ramp computations show that the 
results do not depend greatly on the mesh refinement in the direction normal or parallel to the 
wall. 
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Figure 16. Cf for the laminar and turbulent computations on the fine and coarse meshes 
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Figure 17. Log,,(Ch) for the laminar and turbulent computations on the fine and coarse meshes 

Finally, it is easy to generalize our algorithm and the two-layer approach to 3D configurations. 
At  this moment the solver is able to treat 2D and axisymmetric configurations and the 3D version 
is under development. 
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APPENDIX: COMPUTATION WITH ALGEBRAIC EDDY VISCOSITY MODEL 

The performances of the two-layer model are compared with an algebraic Cebeci-Smith model 
where we introduce a Goldberg correction to take into account the In other 
words, for separated profiles we take the eddy viscosity from the Cebeci-Smith model, where we 
use the distance to the backflow bubble edge (y- yb) instead of the distance to the wall, and in the 
separation bubble (y<yb) we use Goldberg’s model. Thus p, is given for y<yb by 
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and for yc < y by 

where 
915 3/5 

C: = 0.7, A = - ( $ )  , B = ( $ )  - A ,  

Y I  

ueSi=S,.  ylwldy, Y,” = 2 .  

]y~Y14dY 

with a=0.0168, ck,=045, w the vorticity and vIm the value of v,=p, /p at the location of 
( 8 ~ ~ / 8 y ) ~ , ~ .  On the other hand, y* is taken such that F(y*)<0.5Fmax, with 
F = y l o ( [ l  -exp(-y/A)]. Of course, for attached flows we have only two levels in the previous 
scheme ( yb = 0). 
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